Extending the Inverse Vehicle Propulsion Simulation Concept -To Improve Simulation Performance
نویسنده
چکیده
Drive cycle simulations of longitudinal vehicle models is an important tool for design and analysis of power trains. On the market today there are several tools for such simulations, and these tools use mainly two different methods of simulation, forward dynamic or quasi-static inverse simulation. Forward dynamic simulation is capable of describing the dynamic behavior of a system to a high level of detail, but suffers from long simulation times. On the other hand, quasi-static inverse simulations are very fast, but lack the ability of describing additional dynamics in a good way. Here known theory for stable inversion of non linear systems is used in order to try to combine the fast simulation times of the quasi-static inverse simulation with the ability of describing the dynamics as in the forward dynamic simulation. The stable inversion technique together with a new implicit driver model forms a new concept, inverse dynamic simulation. Using this technique the need to develop dedicated inverse models is reduced, and it is shown that a large class of models that can be simulated in forward dynamic simulation also can be simulated in inverse dynamic simulation. In this respect, three powertrain applications are used that include important dynamics that can not be handled using quasi-static inverse simulation. The extensions are engine dynamics, drive line dynamics, and gas flow dynamics around diesel engines. These three cases also represent interesting mathematical properties such as zero dynamics, resonances, and non-minimum phase systems, i.e. unstable zero dynamics. The inversion technique is demonstrated on all three examples, and the feasibility of inverse dynamic simulation of these systems is shown. Moreover, using the three examples, inverse dynamic simulation is compared to forward dynamic simulation regarding simulation set-up effort, simulation time, and parameter-result dependency. It is shown that inverse dynamic simulation is easy to set up, gives short simulation times, and gives consistent result for design space exploration. This makes inverse dynamic simulation a suitable method to use for drive cycle simulation, and especially in situations requiring many simulations, such as optimization over design space, powertrain configuration optimization, or development of powertrain control strategies.
منابع مشابه
Vertical Dynamics Modeling and Simulation of a Six-Wheel Unmanned Ground Vehicle
Vertical dynamics modeling and simulation of a six-wheel unmanned military vehicle (MULE) studied in this paper. The Common Mobility Platform (CMP) chassis provided mobility, built around an advanced propulsion and articulated suspension system gave the vehicle ability to negotiate complex terrain, obstacles, and gaps that a dismounted squad would encounter. Aiming at modeling of vehicle vertic...
متن کاملEfficient Simulation and Optimal Control for Vehicle Propulsion
Efficient drive cycle simulation of longitudinal vehicle propulsion models is an important aid for design and analysis of power trains. Tools on the market today mainly use two different methods for such simulations, forward dynamic or quasi-static inverse simulation. Here known theory for stable inversion of non linear systems is used in order to combine the fast simulation times of the quasi-...
متن کاملVehicle Interior Vibration Simulation-a Tool for Engine Mount Optimization
By new advancements in vehicle manufacturing vehicle quality evaluation and assurance has become a more critical issue. In present work, the vibration transfer path analysis and vibration path ranking of a car interior has been performed. The method is similar to classical multilevel TPA methods but has distinct differences. The method is named VIVS which stands for Vehicle Interior Vibratio...
متن کاملAn adaptive modified fuzzy-sliding mode longitudinal control design and simulation for vehicles equipped with ABS system
In order to improve the safety and longitudinal stability of a vehicle equipped with standard ABS system, this paper, analyzes the basic principles of vehicles stability and proposes a control strategy based on fuzzy adaptive control which will adjust PID gain parameters, using genetic algorithm. A linear three-degree-of-freedom (DOF) vehicle model was set up in Simulink and the stability test ...
متن کاملVibration Suppression of Fuel Sloshing using Subband Adaptive Filtering (RESEARCH NOTE)
One of the main vibration problems of aerospace vehicles with liquid fuel propulsion system is fuel sloshing. This phenomenon is a low frequency vibrational challenge which can affect the motion of the vehicle and degrade the stability of the main control system. In this regards, the motion of the liquid will be very critical when the frequency of the sloshing is very close to the frequencies o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005